据新华社讯(记者吴振东)近日,复旦大学科研团队在高性能纤维电池及电池织物研究上取得新突破:通过设计具有孔道结构的纤维电极,实现电极与高分子凝胶电解质的有效复合,不仅解决了高分子凝胶电解质与电极界面稳定性差的难题,还发展出纤维电池连续化构建方法,实现了高安全性、高储能性能纤维电池的规模制备。相关研究成果在《自然》主刊发表。
科研团队负责人、中国科学院院士彭慧胜表示,由于纤维电池织物和人体紧密贴合,必须以高安全性的高分子凝胶电解质取代易漏易燃的有机电解质,而基于高分子凝胶电解质的纤维电池要想提升储能性能,就必须解决高分子凝胶电解质与纤维电极界面不稳定这一难题。
团队最终从爬山虎与植物藤蔓紧紧缠绕这一自然现象中受到启发,设计了具有多层次网络孔道和取向孔道的纤维电极,并研发单体溶液使之渗入到纤维电极的孔道结构中,单体发生聚合反应后生成高分子凝胶电解质,与纤维电极形成紧密稳定界面,进而实现了高安全性与高储能性能的兼得。
在此基础上,团队发展出基于高分子凝胶电解质纤维电池的连续化制备方法,实现了数千米长度纤维锂离子电池的制备,其能量密度达到128瓦时/公斤,可有效为无人机等大功率用电器供电,同时具有优异的耐变形能力。
彭慧胜表示,通过自主设计关键设备,团队建立了以活性浆料涂覆、高分子隔离膜包覆、纤维螺旋缠绕、凝胶电解质复合,以及高分子熔融封装为核心步骤的纤维电池中试生产线,实现300瓦时/小时的产能,相当于每小时生产的电池可同时为20部手机充电。这为纤维电池的大规模应用提供了有力支持。